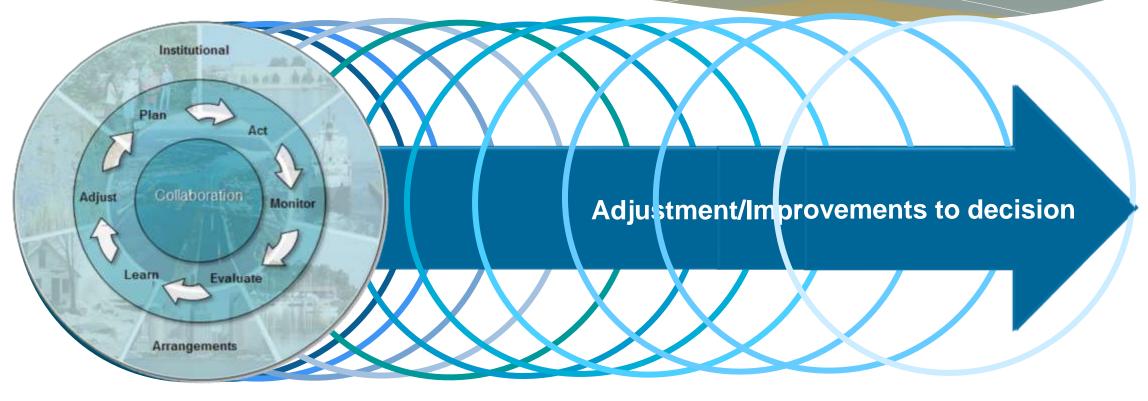
Great Lakes – St. Lawrence Adaptive Management (GLAM) Committee

Adaptive Management and the Great Lakes Challenges and Successes

Columbia River Treaty Adaptive Management Meeting Thursday, May 9, 2019

Wendy Leger, Environment and Climate Change Canada Canadian Co-Chair, GLAM Committee

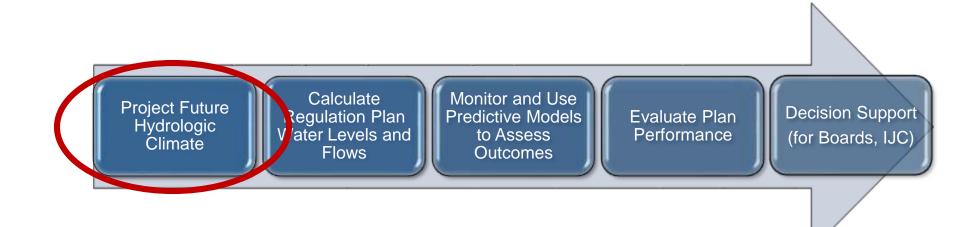


Outline

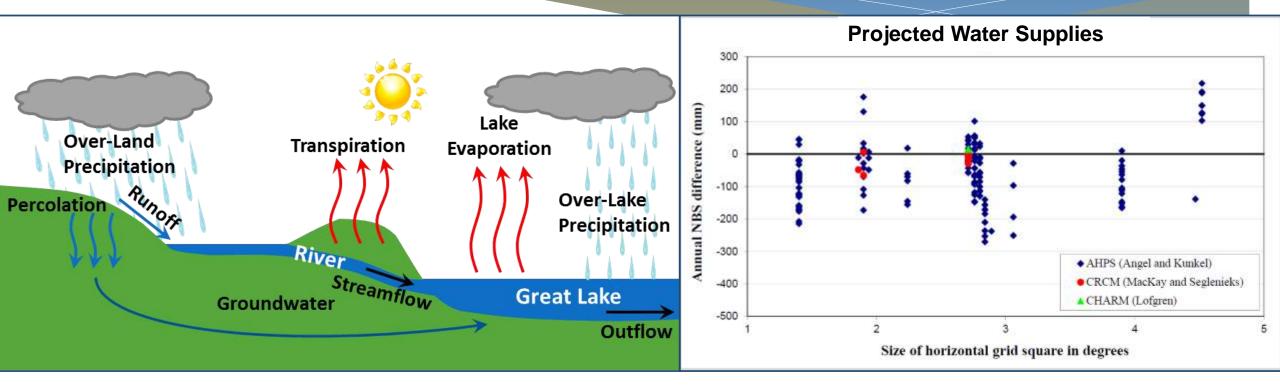
- Background
- Applying the AM framework in the Great Lakes-St. Lawrence River system
- How 2017 immediately tested the AM framework
- 12 year strategy where we want to be?
- Lessons learned

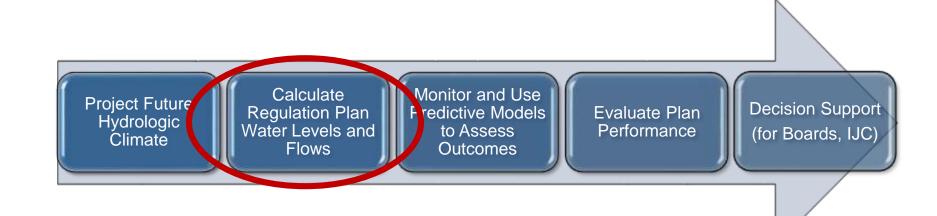
Adaptive Management is Iterative Always working towards improvements

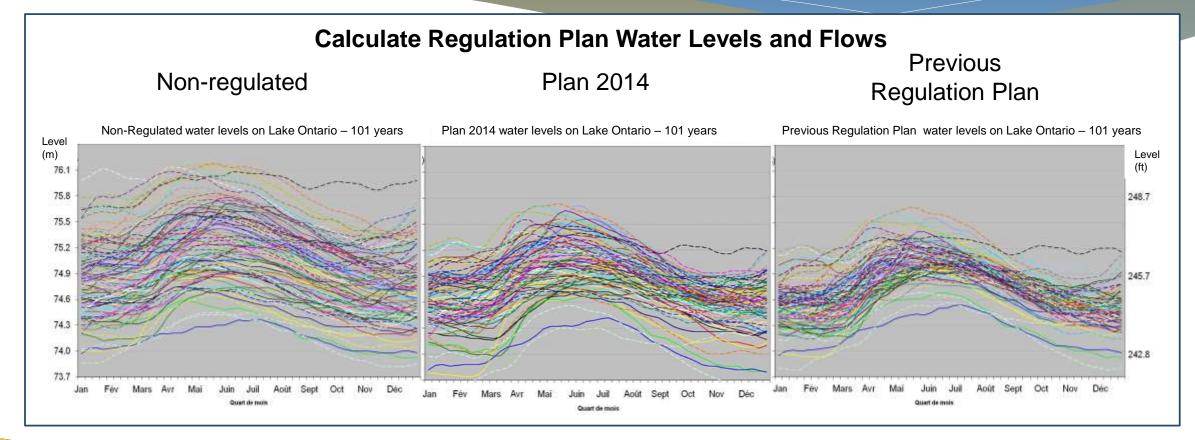
Great Lakes-St. Lawrence River Adaptive Management (GLAM) Committee

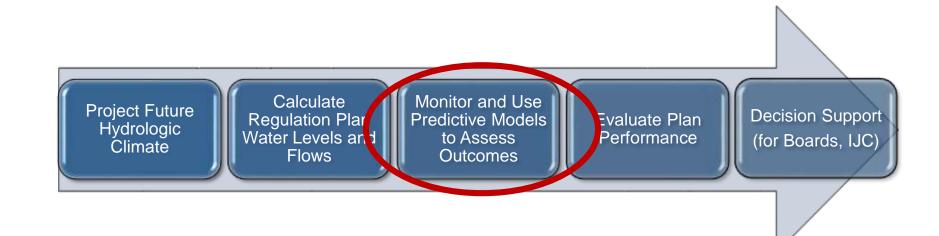

- Established by the IJC in January 2015 for on-going review of lake regulation plans recognizing changing conditions
- Binational Committee comprised of 16 members from federal, state, and provincial agencies

GLAM reports to all three Great Lakes Boards of Control • Key questions include:

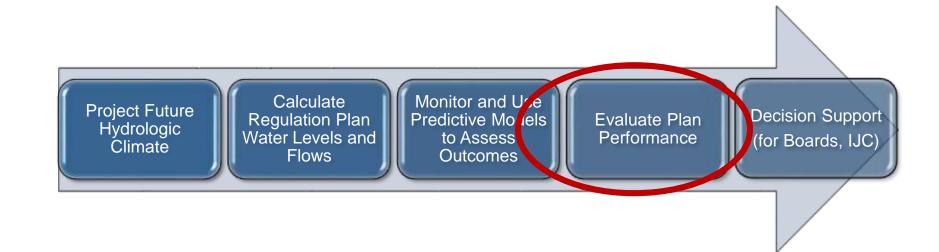

- How well are the impacts of levels and flows represented by current data and models?
- Are water supply conditions changing?
- Are the physical, chemical, biological, and/or socioeconomic conditions changing?
- Can water level management be improved?
- <u>NOTE</u>: GLAM is not a decision making body



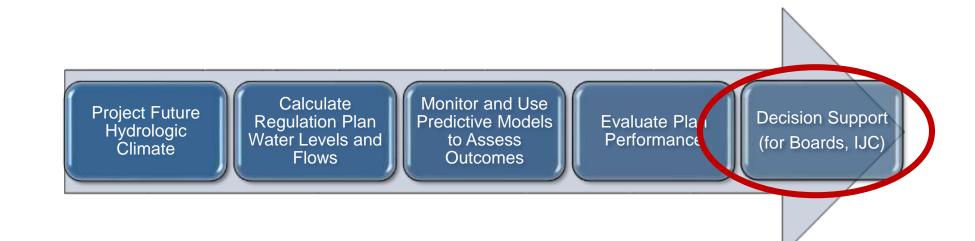

Project Future Hydrologic Climate

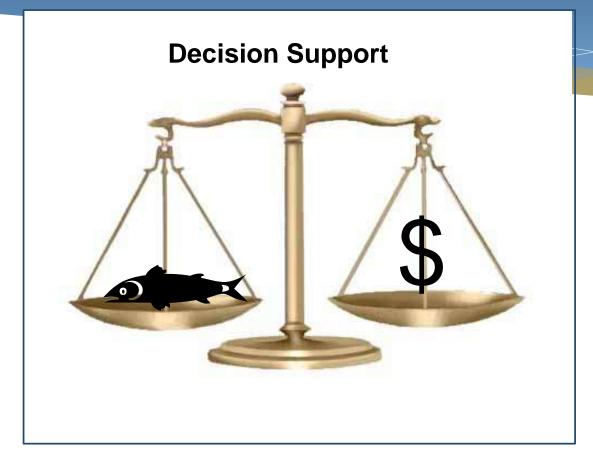


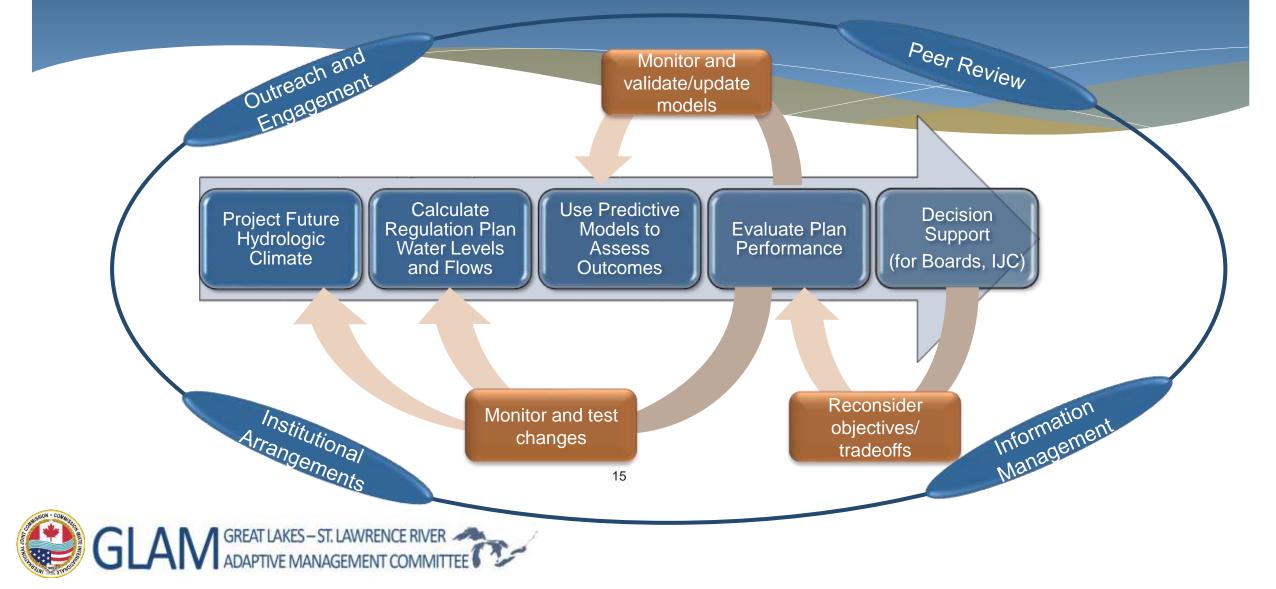
8



9


Monitor and Use Predictive Models to Assess Outcomes




Environmental Performance Indicators Plan Evaluation Economic Performance Indicators													
Environmental Performance Indicators Regulation Plans					Economic Benefits (in \$US Million 2005)	Regulation Plans							
Ratio to 1958DD					Net Average Annual								
Using historical water supplies							Using stochastic water supplies						
	Natural	1958DD	B+	Bv7	Bv7 2-95	Plan 2014 (Bv7 2-90)	osing stornastic water supplies	Natural	1958D D	B+	Bv7	Bv7	Plan 2014
Lake Ontario				'								2-95	(Bv7 2-90)
Meadow Marsh	1.56	1.00	1.44	1.46	1.41	1.40	Total	-\$20.80	\$0.00	\$1.31	\$1.61	\$3.12	\$3.85
Spawning habitat supply (Low Veg 18C)	0.88	1.00	0.95	0.96	0.96	0.95	Municipal and industrial water use	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Spawning habitat supply (High Veg 24C)	1.08	1.00	1.00	0.98	0.99	1.00	St. Lawrence River one-time	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Spawning habitat supply (Low Veg 24C)	1.11	1.00	1.02	1.05	1.04	1.03	infrastructure costs	20.00	20.00	20.00	20.00	J0.00	<i>90.00</i>
Northern Pike YoY recruitment	1.03	1.00	1.00	0.98	0.99	1.00		ć 0. 00	ća 22	ća a a	40.05	ć	40.00
Largemouth BassYoY recruitment	0.96	1.00	0.98	0.98	0.98	0.98	Lake St. Louis water quality investments	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Least Bittern reproductive index	1.13	1.00	1.04	1.12	1.11	1.09	Commercial Navigation	-\$0.05	\$0.00	-\$1.24	-\$0.02	\$0.00	\$0.00
Virginia Rail reproductive index	1.15	1.00	1.11	1.16	1.15	1.09	Ontario	-\$0.02	\$0.00	-\$0.01	-\$0.01	-\$0.01	\$0.00
Black Tern reproductive index	1.16	1.00	1.12	1.19 1.04	1.16	1.11 1.02	Seaway	-\$0.02	\$0.00	-\$1.19	-\$0.01	\$0.00	\$0.00
Yellow Rail preferred breeding habitat King Rail preferred breeding habitat	1.01	1.00	1.01	1.04	1.02	1.02	Montreal	-\$0.01	\$0.00	-\$0.04	\$0.00	\$0.01	\$0.01
Upper River	1.61	1.00	1.10	1.15	1.10	1.14	Hydropower	\$12.59	\$0.00	\$6.08	\$5.40	\$5.26	\$5.26
Spawning habitat (Low Veg 18C)	1.04	1.00	1.01	1.02	1.01	1.01	NYPA-OPG	\$8.77	\$0.00	\$3.85	\$3.45	\$3.41	\$3.54
Spawning habitat (High Veg 24C)	1.02	1.00	1.01	1.00	1.01	1.00		1	7	1			+
Spawning habitat (Low Veg 24C)	1.04	1.00	1.01	1.02	1.01	1.01	Hydro-Quebec	\$3.82	\$0.00	\$2.22	\$1.95	\$1.85	\$1.76
Northern Pike YoY recruitment	1.06	1.00	1.03	1.03	1.03	1.03	Coastal	-\$29.88	\$0.00	-\$2.78	-\$3.17	-\$2.23	-\$2.24
Largemouth Bass YoY recruitment	1.00	1.00	1.00	1.00	1.00	1.00	Lake Ontario total	-\$27.38	\$0.00	-\$2.53	-\$3.11	-\$2.22	-\$2.23
Northern Pike YoY net productivity	2.07	1.00	1.46	1.39	1.39	1.39	Shore protection maintenance	-\$19.85	\$0.00	-\$2.16	-2.62	-\$1.94	-\$1.95
Virginia Rail (RALI) reproductive index	1.33	1.00	1.27	1.17	1.17	1.19	Erosion to unprotected	-\$0.58	\$0.00	-\$0.17	-0.17	-\$0.16	-\$0.18
Muskrat house density, drowned river	14.29	1.00	2.99	2.59	2.56	2.60	developed parcels						
mouth wetlands							Flooding	-\$6.94	\$0.00	-\$0.20	-\$0.32	-\$0.11	-\$0.11
Lower River							Upper St. Lawrence River flooding	-\$0.94	\$0.00	-\$0.20	-\$0.32	-\$0.01	-\$0.01
Golden Shiner - suitable feeding habitat	1.01	1.00	1.00		1.00	1.00			1				
area Wetlandsfish - abundance index	0.07	1.00	0.00		1.00	1.00	Lower St. Lawrence River flooding	-\$0.49	\$0.00	-\$0.22	\$0.00	\$0.00	\$0.00
Migratory wildfowl - habitat area	0.97	1.00	0.90	{	1.00	0.99	Recreational Boating	-\$3.46	\$0.00	-\$0.74	-\$0.60	\$0.10	\$0.79
Least Bittern reproductive index	1.06	1.00	1.03	{	1.02	1.02	Above the dam	-\$5.31	\$0.00	-\$1.42	-\$1.33	-\$0.68	-\$0.10
Virginia Rail reproductive index	1.06	1.00	1.05		1.02	1.02	Lake Ontario	-\$4.93	\$0.00	-\$1.18	-\$1.11	-\$0.57	-\$0.15
Migratory wildfowl productivity	1.04	1.00	1.05	See	1.05	1.02	Alexandria Bay	-\$0.36	\$0.00	-\$0.29	-\$0.25	-\$0.14	\$0.00
Black Tern reproductive index	1.02	1.00	0.97	Note	1.01	1.00	Ogdensburg	-\$0.07	\$0.00	\$0.00	-\$0.02	-\$0.01	\$0.00
Northern Pike reproductive area	1.01	1.00	1.03	1	1.01	1.00			\$0.00 \$0.00	\$0.00 \$0.05		\$0.01	\$0.00 \$0.05
Eastern Sand Darter reproductive area	1.00	1.00	0.99	1	1.00	1.00	Lake St. Lawrence	\$0.05	T	+	\$0.04	+	+
Spiny Softshell Turtle reproductive	1.01	1.00	1.01		0.99	0.99	Below the dam	\$1.85	\$0.00	\$0.68	\$0.72	\$0.78	\$0.90
habitat area							Lake St. Louis	\$1.03	\$0.00	\$0.49	\$0.45	\$0.48	\$0.54
Bridle Shiner reproductive habitat area	0.97	1.00	0.92	1	0.95	0.94	Montreal	\$0.64	\$0.00	\$0.19	\$0.20	\$0.22	\$0.26
Muskrat surviving houses	1.05	1.00	0.99		0.96	0.96	Lake St. Pierre	\$0.18	\$0.00	\$0.00	\$0.07	\$0.08	\$0.10
Shading indicates species at risk									· ·	-			

Challenges for GLAM Committee

- Geographic scope of Great Lakes is very large
- Committee working without a sustained budget and with limited resources
- Existing models are getting out of date and/or are no longer useable
- Not all performance indicators are easily updatable need long-term monitoring program
- Engaging stakeholders takes considerable effort, commitment and a strategy
- Information management is necessary and complicated in a binational setting
- Mother Nature can throw you a curve ball!

2017 – As Luck would have it...

Set Weather 🗸

NYup.com

Syracuse breaks 100-year-old rainfall record; Buffalo breaks an even older one

Updated May 5, 2017; Posted May 5, 2017

Gallery: Rain brings high waters in Central New York

thestar.com (

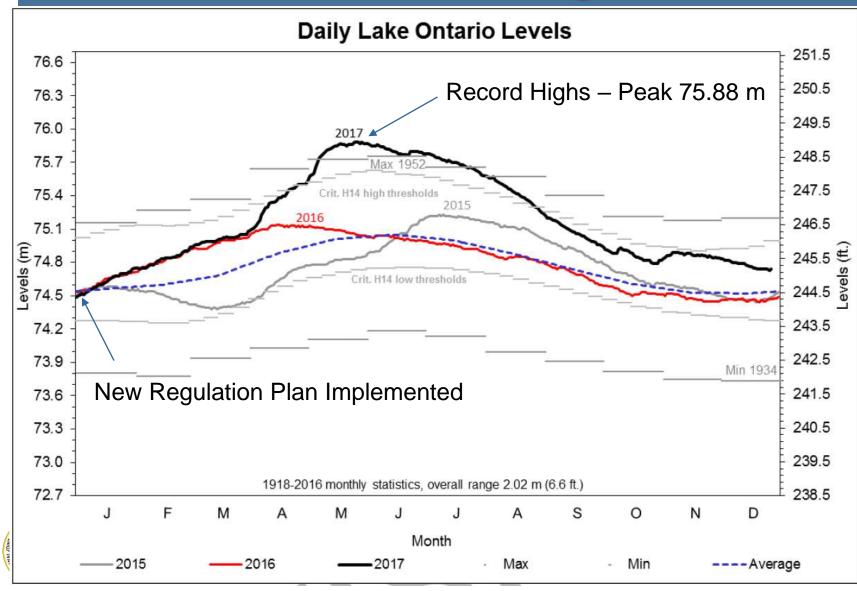
Toronto rides out day of heavy rains, island residents take it in stride

Over ς_2 millimetres of rain washed over Toronto between Thursday and Friday evening.

Bookhast and his dog Tatso havegate as area of finished ground on Ward's bland on Filday memoing. 19352 WHITER / TORONTO

By PETER EDWARDS Staff Reporter PETER GOFFIN GTA Pril, Nay 5, 2017

GTA


Army in Quebec, hundreds evacuated as water levels continue to rise

LOCAL

2017 – Record High Water Levels

Many Blame New Regulation Plan

Cuomo on Lake Ontario flooding: 'There's that the IJC blew it'

by Tyler Head | Monday, May 29th 2017

Cuomo on Lake Ontario flooding: 'There's no doubt that the IJC blew it'

Tenney: Plan 2014 a 'major contribu

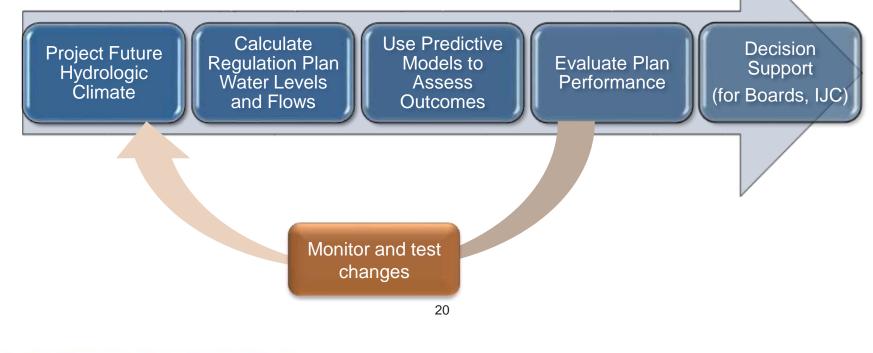
By MATTHEW REITZ matti@fultorivalleynews.com Jun 26, 2017 .

TOP STORY

Mobilizing to fight Plan 2014: Trouble rising

Grassroots groups push for replacement of new lake level control plan BY TIM FENSTER tim tenster@tockportjournal.com Sep 24, 2017

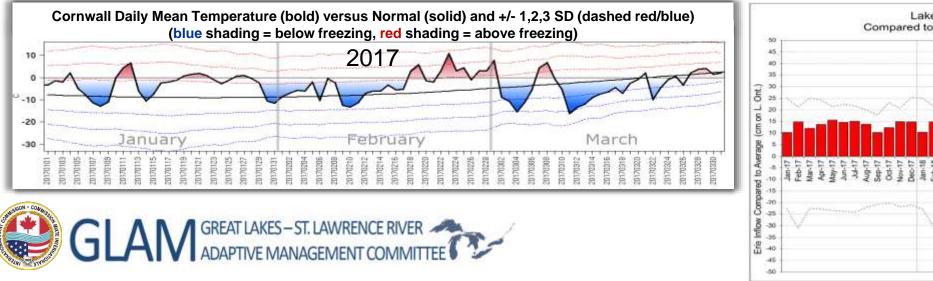
Congresswoman Claudia Tenney, R-New Hartford, is pictured on the left in Mexico last year surveying damage brought by flooding from Lake Ontario. Tenney announced earlier this week the town of Mexico would receive funding for an approved water district.

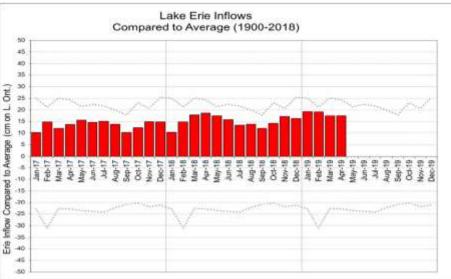


Is Plan 2014 to Blame for Lake and River Flooding?

BY BRIAN DWYER | JEFFERSON COUNTY

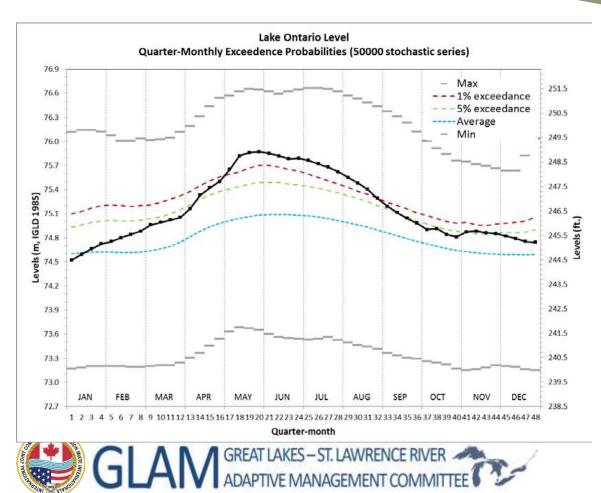
MAY 30, 2017 @9:35 PM

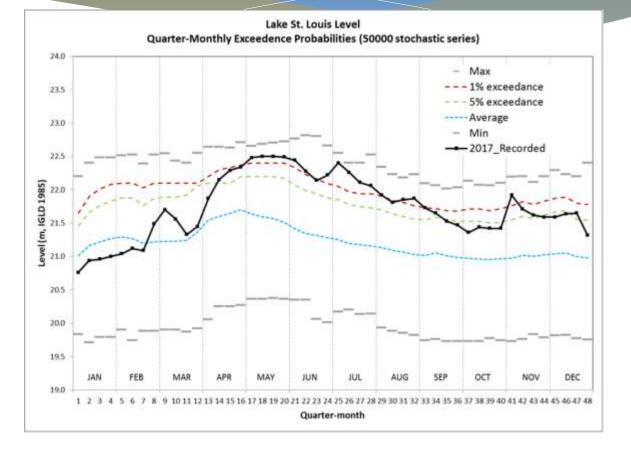



Understand the Causes/Drivers

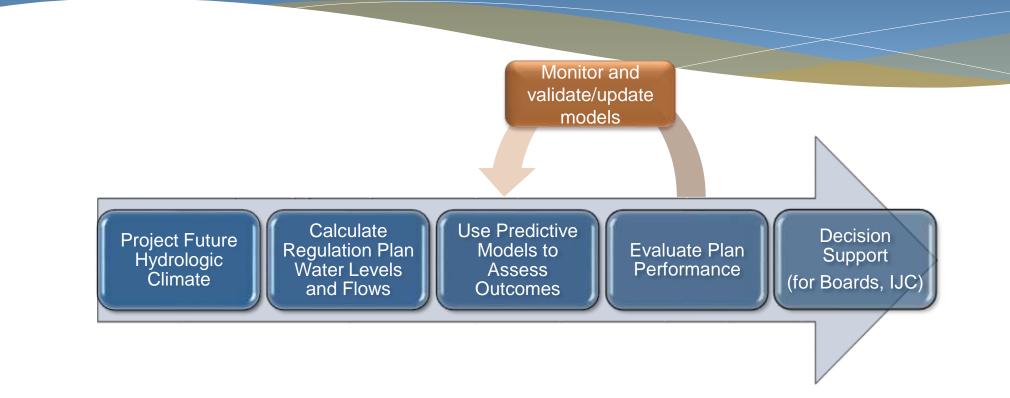
- Extreme water levels a result of the combination of:
 - record breaking precipitation in April and May 2017 over **both** Lake Ontario basin <u>and</u> Ottawa River basin, similar in 2019
 - high inflows from Lake Erie since Jan 2017
 - unusual ice conditions in St. Lawrence River in 2017

ECCC NWP model gridded data / Données sur grille de modèle de PNT de ECCC. Normal: 2002-2016





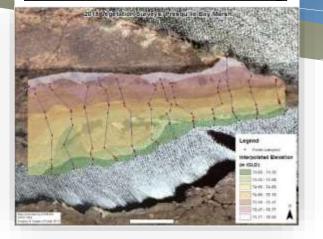
Are Levels within Ranges Used to Assess the Plan?


Lake Ontario

GLAM Framework

23

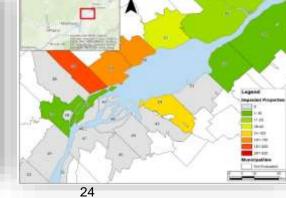
2017 Impact Assessment - Monitoring


Aerial Imagery Analysis

Site Visits

Wetlands Monitoring

Media Review

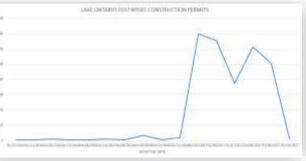

GREAT LAKES – ST. LAWRENCE RIVER ADAPTIVE MANAGEMENT COMMITTEE

A state of emergency tas been declared in the town of Greece

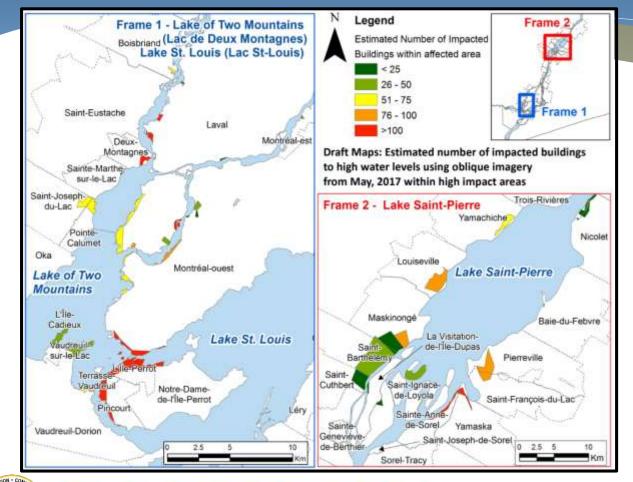
Town Supervisor Bill Redich issued the state of envergency, effective at 3:30 p.m. Tuesday, "due to ming waters and the possibility of flooding," a release said.

lich added. 'This is not a travel ban. However, we

Municipal Summaries

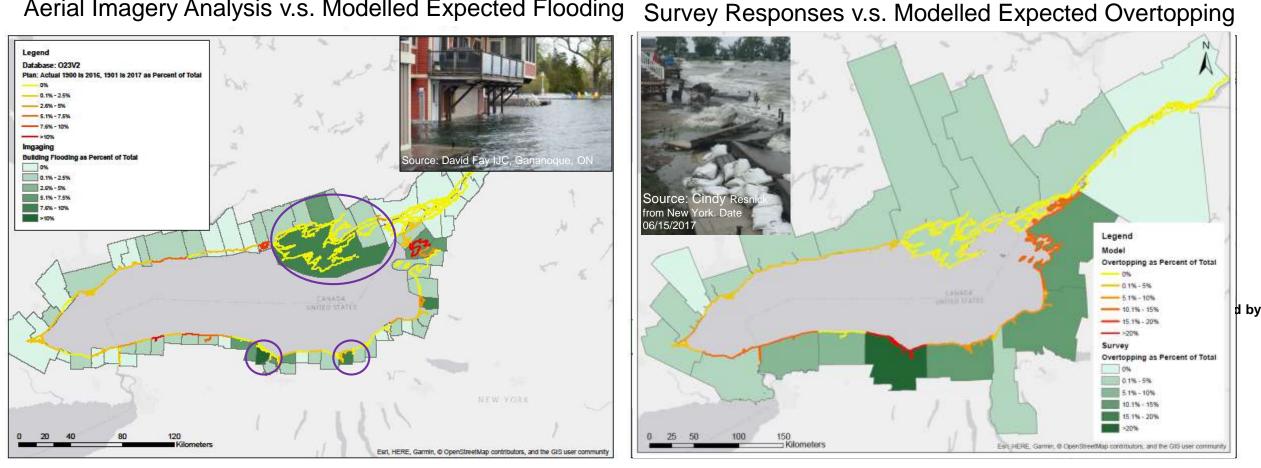


On-line Self Reporting Survey


E4: Please indicate how much damage has occurred to other features of your property because of erosion during the 2017 high water event:

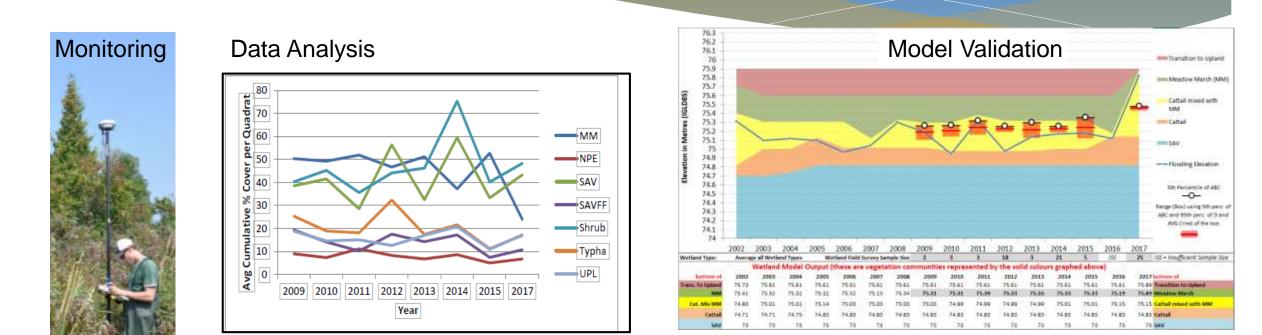
	No dumage	Small amount of damage	Moderate amount of damage	Substantial amount of damage	i don't know	Does not apply
Main structure of home/business		0				
Outbuilding (boat house, shed, garage, etc.)		0	0			0
DHCK.	0/		0	10		(0)
Road Access	0	0	0	0	0	0
Dock/Pier				0		
Stairs or ramp for beach/water	0		0	0		0

Flooding Impacts Oblique Imagery Review: Lower St. Lawrence River

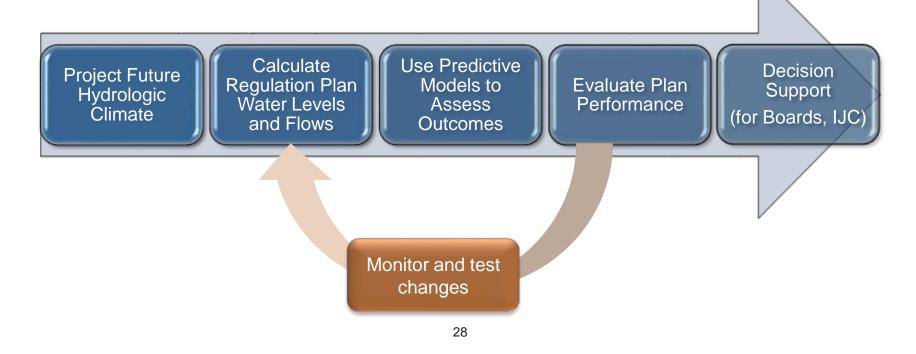


Pierrefonds neighbourhood in Montreal Quebec on 05/09/2017

Chenail-du-Moine area near Sorel, (Lake Sainte-Pierre) Quebec on 05/09/2017


Comparing Monitoring Data to Modelled Outcomes to Validate/Update Models

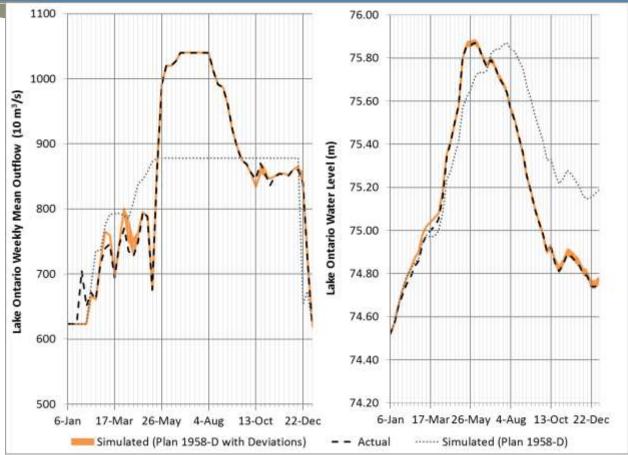
Aerial Imagery Analysis v.s. Modelled Expected Flooding

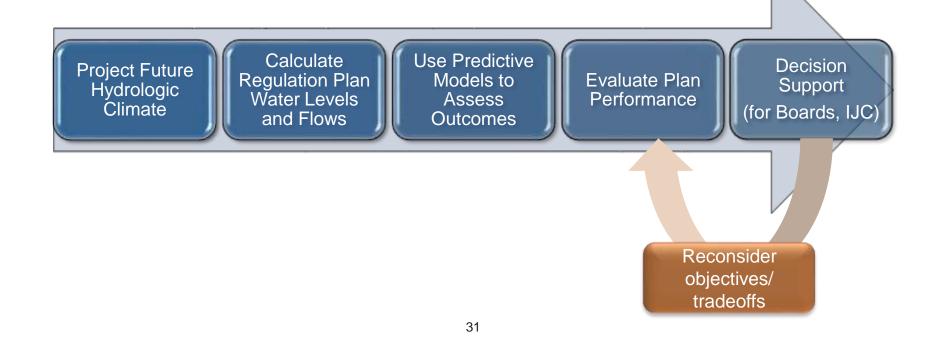


Wetlands Monitoring and Model Validation

Assess whether expected modelled shifts in vegetative guild extent from 2017 water level conditions evident in monitored data from following years

Regulation Plan Review Immediate Retrospective


- What can be learned from 2017 that could inform plan improvements?
 - Testing Plan 2014 under alternative hydroclimate conditions
 - Can regulation be improved in the future? Examine modifications to Plan Rules, limits and Trigger levels



Finding : 2017 had extraordinary conditions across Lake Ontario and the St. Lawrence River, but Plan 2014 did not contribute to record high water levels

- One year of analysis based on an extraordinary event
- Will continue to inform future analyses
- Provides an assessment of conditions never experienced before (only modelled)

Decision Support

- GLAM not a decision maker, but assists Board and IJC in decision making process. Asking the right questions is essential!
- Plan assessment requires multi-year strategy

GLAM Interpretation of IJC Plan Objectives

- Consistent with Boundary Waters Treaty
- Net benefits (economic and ecosystem)
- No disproportionate losses (balance between interests and upstream/downstream)
- Robustness under a range of plausible future climate conditions

Communication, Outreach and Engagement

- Focus is on two way, peer to peer communication, not broadcasts (any broadcasts will come through Boards)
- GLAM to build circles of influence covering all interest categories

- GLAM is working to establish networks with research community
- Engagement with First Nations is through Boards and IJC

Early Successes

1. Strategy development

2. Monitoring changes

- Hydrology, operational issues, LO wetlands, shore protection
 - Impacts of 2017 high water (coastal, municipal/industrial water, marinas, shipping, hydropower, environment)
- Leveraging activities/data of other agencies and funding sources
- **3. Analysis** of Great Lakes hydrology (modelling, water balance uncertainty analysis)
 - Modelling (St Mary's River eco-hydraulic model)
- 4. Outreach to science community
- 5. Forum for coordination of work
- 6. Reporting to IJC, public

Great Lakes-St. Lawrence River Adaptive Management (GLAM) Committee

Summary of 2017 Great Lakes Basin Conditions and Water Level Impacts to Support Ongoing Regulation Plan Evaluation

November 9, 2018

A report to the Great Lakes Boards and the International Joint Commission Covering the period Jan. 1, 2017 to Dec. 31, 2017

12 Year Strategy Proposed Items

1. Calculate Water levels and flows [\$\$/yr]

- Develop Water Supply Scenarios for plan evaluation (Great Lakes St. Lawrence)
- Refine routing models to calculate system levels and flows
- Develop and test long-range forecasting in regulation plans
- 2. Performance Indicators and predictive models [\$\$\$/yr]
 - A monitoring plan (prioritize performance indicators)
 - Performance indicator updates/development, model validation.
- **3.** Plan Formulation and Evaluation [\$/yr]
 - "Shared Vision Modelling" integration
 - Visualization tools
 - Plan development and testing
 - Assessing outcomes with the Boards and IJC
- 4. Decision support and trade-off analysis [\$/yr]

- 5. Peer review/science engagement [\$/yr]
- 6. Stakeholder engagement [\$/yr]
- 7. Information Management [\$/yr]
- 8. Institutional Arrangements

Lessons Learned

- Funding continues to be a challenge
- Monitoring plan has to consider event based requirements (need to be able to mobilize quickly)
- Connections with other agencies/organizations and stakeholders is essential and needs to be maintained
- On-going assessments need to be practical
- Adaptive management is not easy, but it is possible

GLAM Committee

The GLAM Committee is comprised of eight members from Canada and eight members from the U.S. with a broad diversity of expertise and interests

U.S.	Canada				
U.S. Co-Chair – USACE (Vacant)	Wendy Leger, Canadian Co-Chair - ECCC				
Don Zelazny – NYDEC	Jonathan Staples - OMNRF				
David Hamilton – The Nature Conservancy	Patricia Clavet – MDDELCC (Quebec)				
Kevin O'Donnell– USEPA	Sue Doka – DFO				
NOAA (Vacant)	Frank Seglenieks – ECCC				
Bill Werick – Consultant	Jean Morin – ECCC				
Keith Koralewski – USACE	Rob Caldwell – ECCC				
John Allis – USACE (acting co-chair)	Jacob Bruxer - ECCC				
Bryce Carmichael, U.S. Secretary - USACE	Mike Shantz, Canadian Secretary - ECCC				

- ST. LAWRENCE RIVER 🛹

VE MANAGEMENT COMMITTEE

For more information, please visit

Great Lakes-St. Lawrence River Adaptive Management (GLAM) Committee

Summary of 2017 Great Lakes Basin Conditions and Water Level Impacts to Support Ongoing Regulation Plan Evaluation

November 9, 2018

A report to the Great Lakes Boards and the International Joint Commission Covering the period Jan. 1, 2017 to Dec. 31, 2017

http://ijc.org/en_/GLAM

https://ijc.org/en/glam/summary-2017-great-lakes-basinconditions-and-water-level-impacts-support-ongoingregulation